在正方体ABCD-A1B1C1D1(下底面为ABCD)中,E、F、G、H分别是BC、CC1、C1D1、AA1的中点
的有关信息介绍如下:1.取BB1中点M,连接HM,C1M由M,F分别为BB1,CC1中点,可得BM=BB1/2,C1F=CC1/2正方体中,易得BB1=CC1,CC1‖BB1∴BM=C1F,BM‖C1F ∴四边形C1MBF为平行四边形,有C1M‖BF ①由H,M分别为AA1,BB1中点,易证A1H=AA1/2,B1M=BB1/2正方体中,易得AA1=BB1,AA1‖BB1∴A1H=B1M,A1H‖B1M∴四边形A1HMB1为平行四边形,有A1B1=HM,A1B1‖HM正方体中,易得A1B1=C1D1,A1B1‖C1D1∴HM=C1D1,HM‖C1D1∴四边形C1D1HM为平行四边形∴D1H‖C1M联合①式,有BF‖D1H2.取BD中点N,连接EN,D1N由N,E分别为DB,CB中点,可知NE为△BDC中,边CD的中位线有NE=CD/2,NE‖CD∵G为C1D1中点∴D1G=C1D1/2正方体中,易得C1D‖CD,即D1G‖CD,且CD=C1D1∴NE=D1G,NE‖D1G∴NEGD1为平行四边形∴D1N‖GE而D1N∈面BB1D1D,且GE明显不在面BB1D1D上∴GE‖面BB1D1D3.在正方体中,易得BB1=DD1,BB1‖DD1∴面B1BDD1为平行四边形∴BD‖B1D1由第一问结论有:BF‖D1H而BD,BF是面BDF中的两条相交直线B1D1,D1H是面B1D1H中的两条相交直线∴面BDF‖面B1D1H