给出三个多项式: 1 2 x 2 +x , 1 3 x 2 +1 , 1 2 x 2 +3y
的有关信息介绍如下:(1)( 1 2 x 2 +x )+( 1 2 x 2 +3y ,=x 2 +x+3y,当x=-1,猜颤饥y=2,原式=(穗返洞碰-1) 2 +(-1)+3×2=6;(2)( 1 2 x 2 +x )-( 1 2 x 2 +3y ),=x-3y,当x=-1,y=2,原式=(-1)-3×2=-7.其他情况如下:( 1 2 x 2 +x )+( 1 3 x 2 +1 )= 5 6 x 2 +x+1= 5 6 ( 1 2 x 2 +x )-( 1 3 x 2 +1 )= 1 6 x 2 +x-1=- 11 6 ( 1 2 x 2 +3y )+( 1 3 x 2 +1 )= 5 6 x 2 +3y+1= 47 6 ( 1 2 x 2 +3y )-( 1 3 x 2 +1 )= 1 6 x 2 +3y-1= 31 6 .