等腰三角形的定义
的有关信息介绍如下:定义:等腰三角形(isosceles triangle)是指至少有两边等长或相等的三角形。
相等的两个边称等腰三角形的腰,另一边称为底边,相等的两个角称为等腰三角形的底角,其余的角叫做顶角。
等腰三角形的重心、中心和垂心都位于顶点向底边的垂,可以把等腰三角形分成两个全等的直角三角形。
性质:
1、两底角相等;
2、顶角的角平分线、底边的中线和高互相重合;
3、当腰长等于底边长时,则底角和顶角为6。
定理:
若一三角形的二边相等,则二边的对角相等,此定理列在欧几里德的《几何原本》中,称为驴桥定理,也是等腰三角形定理。
驴桥定理是在几何原本的前面出现的较困难命题,是数学能力的一个门槛,无法理解此一命题的人可能也无法处理后面更难的命题。
驴桥定理的逆定理是若一三角形的二角相等,则二角的对边相等。
全等:
若二等腰三角形,其腰相等,底边也相等,即可以用SSS全等证明二个等腰三角形全等,而三角形的角可以用余弦定理求得。