《九章算术》这本书讲了哪些数学问题?
的有关信息介绍如下:《九章算术》是中国一部很古老的数学书,它系统总结了战国、秦汉时期的数学成就,它的写成,经过了很多人长时间修改删补,到东汉时期才逐渐形成定本,其中的第十三题“五家共井”问题是当时世界上最早的研究不定式方程的问题。
《九章算术》的叙述方式以归纳为主,先给出若干例题,再列出解决这类问题的一般方法。这和古希好族灶腊数学的代表著作欧几里得(约公元前330~前275年)的《几何原本》以演绎为主的叙述方式有明显的不同。它对我国后世数学的发展一直有很大的影响,曾经被历代规定作为进行数学教育的教科书,是所谓“算经十书”之一。
《九章算术》全书收有246个数学问题,分为九大类,就是“九章”。第一章“方田”,主要讲各种田亩面积的算法;第二章“粟米”,主要讲各种谷物按比例交换的算法;第三章“衰分”,主要讲按等级或比例进行分配的算法;第四章“少广”,主要讲已知面积和体积反求它一边的算法;第五章“商功”,主要讲有关土石方和用工量的各种工程的算法:第六章“均输”,主要讲按人口多少和路途远近等条件来摊派税收和分派劳力(徭役)的算法;第七章“盈不足”,主要讲两次假设来解决某些难解问题的算法;第八章“方程”,主要讲联立一次方程组的解法和正负数的加减法法则;第九章“勾股”,主要讲勾股定理的应用、直角相似三角形和一元二次方程的解法。
“五家共井”问题的内容是:五户人家合用一口井,若用甲家的绳2条,乙家的绳1条接长;从井口放下去,正好抵达水面;另外或用乙家的绳3条,丙家的1条;或用丙家的4条,丁家的l条;或用了家的5条,戊家的1条:或用戊家的6条,甲家的1条接长,也都一样正好抵达水面,问井的深度及各家的绳长各为多少?
由于原题包含有两个以上的未知量,它没有给出答案的范围和别的特定条件,因此排出方程后有无穷多组解,这样的方程就叫作“不定方程”。如果该题的长度单位为寸,那么它的最小正整数解如下:
井深721寸,甲家的绳长为265寸,乙家的长191寸,丙家的长148寸,丁家的长129寸,戊家的长76寸。
西方最早研究不定方程的人是古希腊亚历山大里亚城的丢番都,时间约在公元4世纪。他比《九章算术》的年代要迟300多年。到了13世纪,中国宋朝的数学家秦九韶在他所著的《数书九章》(1247年)中提出了“大衍求一术”,实际上这就是解一次不定方程的通法,而欧洲到了18世纪,才由瑞士数学家欧拉创立了一次不定方程的一般解法。
秦九韶的“大衍求一术”,不但远比欧洲发明得早,有其历史上的崇高地位,而且在方法上也比欧洲人的办法来得简洁、具体,易于作数值计算。直到现在,与现代数友扮论里头的“一次同余式”的方法相比较,仍有其优越性。所以这个算法一贯被欧美学者所推崇,称为“中国的剩余定理”穗物。