一切初等函数在其定义域内都是连续的,这句话为什么是错误的?
的有关信息介绍如下:是错的,应该是初等函数在其定义区间内是连续的,定义区间是指包含在定义域内的区间。但是基本初等函数在其定义域内连续是正确的说法。
初等函数在其定义区间内连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域内的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域内的区间上讨论连续性。这些区间,我们称之为函数的定义区间。初等函数在其定义域内的区间(即定义区间)上是连续的。
扩展资料
连续函数的性质:
1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。
2、连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。
3、连续函数的复合函数是连续的。
4、一个函数在某点连续的充要条件是它在该点左右都连续。